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A new formulation of the contact problem is proposed and given a foundation, 

which would permit use of modern optimization theory methods (nonlinear 
programing) for its solution. An expanded exposition of the results announced 
in the author’s note [l] is given in the paper. 

In this paper the Hertz problem is understood to be the problem of determining the 
pressure on a part of the surface of a finite deformable body contiguous to an absolutely 
stiff stamp, of determining the shape and size of the contact area, and also of finding the 

state of stress and strain within the body. The proposed formulation differs from thema- 
jority of the problem formulations ordinarily used when either (a) the contact zone is 
fixed in advance and part of the components of the displacement vector of points ofthe 
surface in contact and part of the stress vector components are given in this zone, or (b) 
when a function connecting the normal pressure with the corresponding displacement is 

given [2- 41. The difficulty in the problem under consideration is that it is nonlinear 

even for linearly-elastic media, and the nonlinearity is determined by the boundary con- 

ditions on the part of the surface which can be in contact; these boundary conditions 
have the form of inequalities. 

Signorini [5] first considered a similar type of elasticity theory problems ; there is a 
survey of the latest achievements in such problems in the book [G]. 

The Lions-Stampacchia method of variational inequalities [73 is a comparatively 
simple but powerful instrument for the investigation of the problems mentioned. This 
method, which permits posing and studying both problems of the Signorini type as well 
as all possible optimization problems by a single method, thereby establishes an analogy 
between these two classes of problems and therefore affords the possibility of using effec- 
tive methods of solving optimization problems to solve problems of Signorini type. 

This paper is limited to an investigation of the contact problem for smooth stamps, 
i.e. stamps whose surface has a continuousl) rotating tangent plane (in the zone where 

contact is possible) ; cases of a linearly elastic and a physically nonlinear elastic medi- 
um are examined. 

1. Formulation of the problem. Let an elastic body occupy the domain !A 
with boundary S in a three-dimensional space I(:,. We assume that the boundary S 

consists of three pieces: S S,, ,S, j S,. . The displacement will be considered 

known on the part ,C,, (for simplicity we assume them to be zero, and S,, # $7); on 

the part S, the stresses are 
(1.1) 

where aij are the stress tensor components, and vi are vector components of the unit 
external normal to S,. 
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To describe the conditions on S, , we assume that the boundary of the absolutely stiff 
stamp which can adjoin the domain 9 on the part of the surface S c is given by the equa- 

tion Y (z) = 0 (1.2) 
where Y (3) < 0 within, and Y (5) > 0 outside the stamp. 

Denoting the displacement of points of the body Q by u (x), and the stress vector 
on the surface s, by 0, we use the representation o = (3~ + vo,v. Evidently, (TN = 

(Jij ViVj, ((3T)i = OijVj - UNVi. The conditions on S c are specified in the following 
manner: if points of the surface S c belong to the surface (1.2) after deformation of the 

body Q ,i.e., 
Y (5 $ U (z)) = 0, z E s, (1.3) 

then the tangential component (JT of the vector u equals zero at this point, and the nor- 
mal component UN is not positive ; in the opposite case 

Y(x+n(z))>O, XfGS, (1.4) 

the vector u is zero at this point. 

We emphasize that it is not known in advance whether the point z + u (x) belongs 
to the surface (1.2) and this is the basic difficulty of the problem. 

Later we shall assume that the quantity 1 u( Z) \ issufficiently small, ( grad Y (5) I > 
0, VX E S C, and that the second derivatives of Y (x) are bounded,so that lineari=- 
tion of the conditions on S e with respect to u can be carried out 

Y (x) + u (x) grad Y (x) = 0 ==+- UT = 0, UN 4 0 (1.5) 
Y (z) + u (5) grad Y (x) > 0 + Uijvj = 0 
XE s, 

Let us note that always 

Y (x) + u (x) grad Y (x) > 0, Qx E S, (1.6) 

and this condition is a supplement to the general definition of kinematically achievable 

displacement fields when going over to the variational formulation of the problem,which 
is indeed the subject of the subsequent analysis. 

N o t e 1.1. The Signorini problem [S] is obtained as a particular case of that under 
consideration for Y (x) X 0, grad Y (5) = -v 1 grad Y (2) 1, i.e. when the initial con- 
tact zone is fixed prior to application of the external effects, the contact zone can only 

be diminished after deformation. 

2. Reduction of the problem to a vrrirtionrl problem. Weexa- 
mine the geometrically linear problem assuming the following relationship between the 

stresses and strains [8]: 

Uij = h06ij + 2peij - 2p20 (e,) (2.1) 

0 (e,) = 1 - 
0 b-u) 
*e, ’ 

eij= +(Ui,j+Uj,i), e=eii 

Here h, p are Lam6 parameters, eU is the strain intensity, the repeated subscripts de- 
note summation within the limits 1 to 3, the comma denotes differentiation with re- 
spect to the appropriate coordinate. The case of a physically nonlinear isotropic medium 
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follows from (2.1) for o = 0 , the generalization for anisotropic media is obvious 

Oij T Uijlilr Ei;lr 

where Ui jkh is the tensor of the elastic moduli which possesses the usual symmetry and 
positive-definiteness properties. 

Let us introduce the S. L. Sobolev space of V functions possessing the generalized first 

deriuatives, which are square summable and vanish on 8, and the subset K in thisspace 

I/ L’l] = ( SL’iVi dQ + S la’;, kui, k dS2)"* 
62 hl 

K = {ul‘u E V; Y (x) + grad Y (x) c (x) > 0, Vx E S’,~) 

The subset K is closed (the result of the Lions theorem on traces) and convex in 1’ (the 

convexity is verified directly). 

The initial problem is to determine the vector-function u ~. zi (2) which satisfies 
the equilibriun differential equation 

(IL -I- p) grad div u + pAu - 2p div lo) (e,) en1 -t- pF =: 0 O.‘L) 

(A is the Laplace operator, en is the strain tensor deviator, and ~1’ is the given volume 

force density), the boundary conditions (1. l), (1.5) and u = 0 on 8,. A set of points 

XfZ s, ;or which the constraint (1. 6) is satisfied with the strict equality sign will be 
determined during the solution of this problem, This set is the required contact zone,and 
the reactive pressure in this zone is the required contact pressure. 

Let us introduce the bilinear a (u, r) (in the version under consideration Qijh/r = 

xSij6h.h $_ p (6fk6j,, + 6ih Sjh), and Ciij are the ,Kronecker symbols), the linear L (I?) , 
and the nonlinear j (c) functionals in L’ 

a (zc, v) = 5 6! ijkh&kh (V) & ij (U) d0 
62 

L(v) = \ pFud!2 + j I’vdS 
h 

0 

cl‘(v) 

solution of the formulated initial problem is the solution of the Theorem 2.1. The 

variational inequality 

where j’ (u, c - U) denotes the functional derivative (Gato) at the point-u with re- 
spect to the direction 1: - u (Gato differentiability is evident). 

Conversely, the solution or the variational inequality (2.3) satisfies Eq. (2.2) and the 
conditions (1. l), (1.5) (if the derivatives in (2.2), (1.1) and (1.5) are meaningful). 

Proof. Let z1 be the solution of the problem (2.2), (1. l), (1.5). We multiply (2.2) 

scalarly by 1’ - 11. where I‘ is an arbitrary element of h’, we integrate the expression 
obtained over Q and we apply the Gauss-Ostrogradskii formula. We find 

a (u, V - U) = L(v - 2~) + 1 bij (24) (vi - ui) Vj as + j’ (u, v - u) 
SC 
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It is seen that Dij (U) (Vi - Ui) Vj = (IT (VT - UT) $ ON (VN - UN); according 

to condition (1.5) OT = 0 always, therefore 

aij (U) (Vi - ui) vj = GN (U) (VN - UiV) (2.4) 

Upon compliance with the second of conditions (1.5), the right side of (2.4) equals zero; 

if the first of conditions (1.5) holds, then 

‘P + u grad V = 0 (2.5) 
By definition v E K, therefore 

Y + c grad Y > 0 (2.6) 

Subtracting the equality (2.5) from the inequality (2.6), we obtain 

(v - U) grad ‘4 > 0, VvEK (2.7) 

Since contact occurs at the point under consideration, then 

gradY =-v?(z), y(z)= IgradY I>0 (2.8) 

Substituting (2.8) into (2.7), we arrive at the conclusion that UN - UN > 0 at the 
point 3 under consideration, for all u E K and we have, by virtue of a,,! & 0 

Vi--Ui)VjdS = \ bN(VN-UN)dS>O, VVEK 

S c 

This last inequality permits the conclusion that the element IL satisfies the variational 

inequality (2.3). 
Conversely,let u be the solution of the problem (2.3) and let cp = cp (x) be a re- 

gular function with a compact support in Q [9, lo]. It is evident that u f cp E K; 
substituting the sum u + ‘p first in (2.3), and then the difference u --cp, we arrive at 
the equality a(u,cp)-,?(u,(P)=S PFTdQ 

$1 

from which it follows that the differential equation (2.2) is satisfied in the sense of the 
theory of distributions. 

To give a foundation to the validity of the reasoning presented above, it is sufficient 
to assume that pl;i E L, (Cl), (Tij,j E L, (52); this latter assumption is satisfied if 

u E H2 (Q) n v and o (e,) has a bounded first derivative. To prove that the solu- 

tion of the variational inequality (2.3) satisfies the boundary conditions on S, and s c, 

we assume in addition that P E L, (S,) and that s c C s,. We multiply (2.2) sca- 
larly (in the L2 (Q) sense) by an arbitrary element u E K and we find by applying 
the GaussOstrogradskii formula (the assumptions about smoothness which were formula- 
ted above are used in this step) 

a (UT q - jr (u, V) = \ pFv dill + S Oii (U) Vjvi dS 

62 SUUS, 
(2.9) 

Setting u = u here, subtracting from the expression (2.9) obtained and using the vari- 
ational inequality (2.3), we find 

s [Cij (U) Vj - Pi] (Vi - ui)dS + s oij(U)vj(vi-Ui)dS>,O, VVEK (2.10) 
SU s’, 
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Subjecting the choice of 2: in (2.10) to the additional constraint r~ = u on S er weob- 
tain in place of (2.10) 

n 

\ IOii C”) Vj - PiI (Vi - Ui) dS > 0, VU E K, V = U Ha S, (2.11) 
su 

Let q denote the trace of the function z: - u on s,, the set {cp) is the linear sub- 

space in HI’2 (s,) [ll]; evidently ‘p = 0 on dS, is the boundary of the manifold 

s 0. 
We first consider the inequality (2.11) in the case when cp runs through the set D (8,) 

of infinitely differentiable functions with the compact support in S, , It is seen that 

S [oij (U) vi - l’i] ‘pi dS = 0, VCP E: D (S,) (2.12) 
su 

It is known [ll] that D (S,) is compact in L, (S,), therefore, there results from 

(2.12) that 
Uij (U (X)) Vj = pi (x), x E sa 

as an element of the space L, (S,). It follows from the condition (2.13) obtained, the 
inequality (2.10) and the continuity of the mapping H1 (Q) in Ls (s) [ll] that 

s oii (u) vi (Vi -ui)dS >O, VVE K (2.14) 
SC 

Let us set u = u +- E(P, where E, is an arbitraty positive number ; by using the expan- 
sion q = TN v + (PT, we rewrite the inequality (2.14) in the form 

1 GAY (u) (PN L-B + \ or (u) (PT As a 0 (2.15) 
SC s’C 

Let there be contact at the point x E S c under consideration ; taking account of 

(2, S), we find that at this point (PN (x) < 0, while (PT (x) is arbitrary. If there is no 
contact at the point x E Se, then 

e’p (x) grad Y (x) > - [Y (x) + u (x) grad Y (x)1 (2.16) 

where the right side of this inequality is strictly negative ; therefore, for sufficiently 

small E the function cp (x) (and (PT (x)) is arbitrary. 
Now, we note that the set 

I+” = (cp 1 cp = Cp (z), 2 f? SC, (PN (x) = oj 

is a linear subspace in _Ls (S ,); considering the inequality (2.15) in W fl D (S ,), 
we conclude that 

s QT (u) (PT dS = 0, VIEW 17 D(S,) (2.17) 
SC 

Taking account of the density of the embedding of D (S J in L, (S ,), we conclude 
that 

CrT (U (X)) = 0, vx E s C (2.13) 

as an element of L, (S ,.). It follows from (2.18) and the continuity of the mapping 
Hi (Q) in L, (S) that the inequality (2.15) has the form 

s 6N @) cvN - UN) ds > 0, VII E K 

SC 
(2.19) 
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Let 8 Cu denote the contact zone, i. e. the set of those points x CS S c for which 

(1.6) is converted into the equality ; again let (PN denote the trace of the difference 

UN-UN on S, and let us subject the selection of (PN to the additional constraint 

(PN = 0 on SC’. 
We see by the method used twice above,that 

ON(x) =o, ‘Erx=s,--s,” 

as an element of the space L,. We have hence and from the inequality (2.19) 

It hence follows that 
o‘N (u(z)) < 0, v 2 E SC” 

which completes the proof of Theorem (2.1). 

N o t e 2.1. The transformations performed in the proof of Theorem 2.1 remain valid 
even for Pi E H+ (S,) [ll]. 

N o t e 2.2. The properties of continuity and the density of embeddings of one space 
into the other were used in proving the second part of Theorem 2.1. These properties 
are true only under definite constraints on the shape and smoothness of the boundary of 
the domain of definition ; the establishment of these constraints is an open problem [12]. 

The ore m 2.2. The solution of the variational inequality (2.3) is equivalent to the 
problem of minimizing the functional 

J (v) = llza (v, u) - L (u ) - j (v), VEK (2.20) 

On the basis of the known results in 1133, the proof of this theorem reduces to verifi- 
cation of the convexity and differentiability of J (u); this verification will be per- 

formed in Sect. 3 in the investigation of the existence and uniqueness. 

3, Exlctence and uniqueness of the solution. 
The or e m 3.1. If the function o (s) is continuous and 

O< o<d(sw(s))/ds<l, dw(s)/ds>O (3.1) 

p Fi E L, (Q), Pi E H-“f (S,) (3.2) 

then the problem of minimizing the functional (2.20) formulated in Sect. 2 has a solu- 
tion, and moreover, only one. 

The proof is based on the theorem [14, 151 about the existence and uniqueness of the 

solution of the problem of convex nonlinear programing and reduces to verification of 
the strict convexity and coercitivity of the functional (2.20) ; the coercitivity means 

that 
]im J (4 = +m, 11 u 11 -+ + 00 (3.3) 

We prove the coercitivity without using condition (3.1) by assuming concavity and 
monotonic growth of the function CD (e,). 

L e m ma 3.1. If Q (e,) is a strictly concave, monotonically increasing function ) 
where @ (e,) & 3 l.%, veU, then we have the estimate 

e”,(u) 
u 

S[ s w (x) x dx dS2 < c 11 u II”-‘, 
I 

0 < E < 1 

a 0 
(3.4) 
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where c and P are some positive constants. 
Proof. By the method of contradiction it can be verified that there exists a II ~ : 

R < 1 such that 

It follows from (3.5) 
(3.5) 

.i 
ii 

Now, we prove that 

s e,(u) dQ 6 cz II 

In fact, by definition 
$1 

jj v jV” = fj ziyi dQ j- 5 ui, $ui, 
B 6a 

r c 

v IIVY c2 = const > 0 
“. (3.7) 

dG?,, 
s 

vivi dSt i_ 
s 

eii (~1 eij (vf d!2 = (3.3) 
ra ra 

By the Cauchy-Buniakowski inequality 

Hence, and from the inequality (3.8) there follows (3.7) where cs = 

To complete the proof of the lemma, we use the Holder inequality 

[ %‘pzdQ d (~~~pd~~l’p (~&‘dQ)“’ 
b D a 

$++=I, P>O, C7>0 

Setting p L= 2 / (2 - a), 9 = 2 / F, C+Y~ = eU2-‘, ‘pz = 1 therein, we find 

(3.9) 

Combining the estimates (3. S), (3.7) and (3.9), we obtain (3.4). 
Now, we prove the coercitivity of J (v); let us first note that the elastic modulus ten- 

sor is 
aijkh Ekh eij > $&ij Fij, QiTij= &ji, f~ = Consf, > 0 

from the inequality of positive definiteness, while the estimate 

a (u, 9 > a2 11 y J/a, VU E V, a + 0 

follows from the Korn inequality. 
The form L (v) 1s evidently continuous on I/, therefore 

IL(v) I& I~L~~~~~~l 
Hence 

J (u) = r/a a (u, u) - L (v) - j (u) > Ii, a2 II u 11-2 - 

11 L Ij /I u (1 - c jl u li”-E * + 00 for II 41 -+ + 00 

(3.10) 
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and the coercitivity of J (0) is therefore established. 

N o t e 3.1. The computation and reasoning performed do not go through if the set 

S, is empty. To prove the estimate (3. lo), and the existence and uniqueness together 
With (3.lO),it must be assumed that 

\ pFvdQ+ 5 PvdS<O, Vv=a~+[bxx] 

h SU 

where Q and b are constant vectors, v # 0, v E K. This condition is known as the 

strong Signorini hypothesis [7, 121. 
N o t e 3.2. The existence theorem was first proved in the ordinary elasticity-plasti- 

city problem in [16], where a condition of the form (3.1) was also used. 

N ot e 3.3. It is necessary to assume that Q, (0) = 0 in proving Lemma 3.1: this 

condition is satisfied for materials without initial stresses. 
We prove the convexity under the additional assumption on the existence of jm fu, cp, 

cp). We have 

t2/3a’ (e, 0.4) I eti (UN @ii (4 eij (9H21 dQ 

According to the Cauchy-Buniakowski ine~ality 

[e,j (U) eij ((p)P & '!4 et (U) eu2 (rF) 

Using (3.11) and (3. l), we see that 

j” (u, cp, rp) < a (cpl 0) 

(3.11) 

Hence, by virtue of the criterion [13], strict convexity of the ~nctional(2.12) follows, 
which indeed competes the proof of Theorem 3.1. 

N o t e, 3.4. Theorem 3, I is valid and its proof is simplified when CD (eu) is a linear 

function which grows no more rapidly than 3~6,. 
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